Linearity problem for non-abelian tensor products
نویسندگان
چکیده
منابع مشابه
Some Computations of Non - Abelian Tensor Products of Groups
A generalised tensor product G 0 H of groups G, H has been introduced by R. Brown and J.-L. Loday in [3,4]. It arises in applications in homotopy theory of a generalised Van Kampen theorem. The reason why G 0 H does not necessarily reduce to GUh Oz Huh, the usual tensor product over Z of the abelianisations, is that it is assumed that G acts on H (on the left) and H acts on G (on the left), and...
متن کاملNon-abelian Tensor-multiplet Anomalies
We use the anomaly cancellation of the M-theory fivebrane to derive the R-symmetry anomalies of the AN (0, 2) tensor-multiplet theories. This result leads to a simple derivation of black hole entropy in d = 4,N = 2 compactifications of M -theory. We also show how the formalism of normal bundle anomaly cancellation clarifies the Kaluza-Klein origin of Chern-Simons terms in gauged supergravity th...
متن کاملnon-divisibility for abelian groups
Throughout all groups are abelian. We say a group G is n-divisible if nG = G. If G has no non-zero n-divisible subgroups for all n>1 then we say that G is absolutely non-divisible. In the study of class C consisting all absolutely non-divisible groups such as G, we come across the sub groups T_p(G) = the sum of all p-divisible subgroups and rad_p(G) = the intersection of all p^nG. The proper...
متن کاملThe non-abelian tensor product of normal crossed submodules of groups
In this article, the notions of non-abelian tensor and exterior products of two normal crossed submodules of a given crossed module of groups are introduced and some of their basic properties are established. In particular, we investigate some common properties between normal crossed modules and their tensor products, and present some bounds on the nilpotency class and solvability length of the...
متن کاملTensor Products of Maximal Abelian Subalgberas of C*-algebras
It is shown that if C1 and C2 are maximal abelian self-adjoint subalgebras (masas) of C*-algebras A1 and A2, respectively, then the completion C1 ⊗ C2 of the algebraic tensor product C1 ⊙ C2 of C1 and C2 in any C*-tensor product A1 ⊗β A2 is maximal abelian provided that C1 has the extension property of Kadison and Singer and C2 contains an approximate identity for A2. Examples are given to show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Homology, Homotopy and Applications
سال: 2019
ISSN: 1532-0073,1532-0081
DOI: 10.4310/hha.2019.v21.n1.a12